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[1] We have constructed an inverse estimate of surface fluxes of carbon dioxide using
both atmospheric and oceanic observational constraints. This global estimate is
spatially resolved into 11 land regions and 11 ocean regions, and is calculated as a
temporal mean for the period 1992–1996. The method interprets in situ
observations of carbon dioxide concentration in the ocean and atmosphere with
transport estimates from global circulation models. Uncertainty in the modeled
circulation is explicitly considered in this inversion by using a suite of 16 atmospheric
and 10 oceanic transport simulations. The inversion analysis, coupled with
estimates of river carbon delivery, indicates that the open ocean had a net carbon
uptake from the atmosphere during the period 1992–96 of 1.7 PgC yr�1, consisting of
an uptake of 2.1 PgC yr�1 of anthropogenic carbon and a natural outgassing of about
0.5 PgC yr�1 of carbon fixed on land and transported through rivers to the open ocean.
The formal uncertainty on this oceanic uptake, despite a comprehensive effort to
quantify sources of error due to modeling biases, uncertain riverine carbon load, and
biogeochemical assumptions, is driven down to 0.2 PgC yr�1 by the large number and
relatively even spatial distribution of oceanic observations used. Other sources of error,
for which quantifiable estimates are not currently available, such as unresolved
transport and large region inversion bias, may increase this uncertainty.
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1. Introduction

[2] Since the mid-1950s, when consistent records of
atmospheric carbon dioxide measurements at widely sepa-
rated stations first became available, researchers have rec-
ognized the existence of persistent spatial concentration
gradients and attempted to make inferences from them on
how the carbon cycle operates [Keeling, 1960]. That these
gradients endure in the face of constant mixing by atmo-
spheric circulation implies the existence of persistent sur-
face sources and sinks of CO2. Extensive work has been
done to localize and quantify these fluxes of carbon,
generally by estimating surface fluxes for a discrete set of

land and ocean regions in the context of atmospheric
transport inversions [e.g., Bolin and Keeling, 1963; Keeling
et al., 1989; Enting and Mansbridge, 1989; Tans et al.,
1989; Fan et al., 1998; Gurney et al., 2002].
[3] We concern ourselves in this paper with augmenting

atmospheric inversions with information from the ocean. In
the past, this has generally involved incorporating con-
straints from surface observations of the air-sea pCO2

difference. Ocean constraints of this nature were first
formally introduced into an atmospheric inversion by Tans
et al. [1990]. As in previous studies [Keeling et al., 1989;
Enting and Mansbridge, 1989; Tans et al., 1989], these
authors sought to interpret atmospheric concentration gra-
dients with the help of simulations of atmospheric transport
and mechanistic models of surface processes. By also
considering fluxes estimated from air-sea pCO2 differences,
they were able to make powerful arguments about the
relative likelihoods of a collection of carbon source/sink
scenarios. Among their conclusions was that the global
ocean could not be removing more than 1 PgC yr�1 from
the atmosphere in the period 1981–1987. Fitting the ob-
served meridional gradient required a large sink in the
northern temperate latitudes, a finding consistent with the
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earlier conclusion of Keeling et al. [1989]. Unlike the study
of Keeling et al. [1989], however, Tans et al. [1989] were
able to attribute this sink to land on the basis of oceanic
constraints, since observed air-sea pCO2 differences in the
extratropical northern oceans were too small to support an
ocean sink of the required magnitude.
[4] Contemporary simulations of the ocean carbon cycle

[e.g., Siegenthaler, 1983; Sarmiento et al., 1992] were at
odds with the ocean sink predictions of both of these
inversion studies. The Tans et al. [1990] global ocean sink
estimate was much smaller than simulations, and while
Keeling et al. [1989] found a larger ocean sink, their
attribution of the sink principally to the North Atlantic
Ocean was not in agreement with model predictions and
DpCO2 observations. The dichotomy of interpretations of
the ocean’s role in the global carbon cycle has yet to be fully
reconciled. Analyses of atmospheric oxygen and 13C con-
centrations have generally supported a large ocean sink
[Keeling and Shertz, 1992; Battle et al., 2000; Plattner et
al., 2002; Bopp et al., 2002], and a first inversion of ocean
interior data [Gloor et al., 2003] also found a larger ocean
sink. Further inverse analyses of atmospheric CO2 concen-
trations, however, have generally supported the existence of
a smaller ocean sink [e.g., Bousquet et al., 1999; Gurney et
al., 2002, 2004].
[5] In this paper, we couple an atmospheric CO2 inversion

to an inversion using ocean interior data. This ‘‘joint’’
inversion propagates information from the ocean to the land
in a simple manner. Atmospheric inversions place strong
constraints on surface fluxes aggregated in broad latitudinal
bands, owing to the combination of strong zonal flow and
sparse observations. Oceanic inversions, on the other hand,
have the power to provide strong constraints on air-sea
fluxes at higher spatial resolution, but do not directly
address air-land fluxes. The estimated ocean fluxes indi-
rectly constrain terrestrial fluxes by accounting for some of
the total flux in the latitudinal bands. In this manner, flux
estimates are obtained without regularization: we impose
neither model-derived Bayesian priors, nor assumed corre-
lations between regional fluxes.

2. Methods

[6] The joint inversion consists of transport inversions of
atmospheric and oceanic observations, using multiple cir-
culation models to assess the effects of errors in simulated
transport. For each available model estimate of transport, we
use the standard technique of weighted linear least squares
to find the most probable fluxes to explain the available set
of error-weighted observations [Lawson and Hanson,
1974]. Fluxes are estimated for 11 ocean and 11 land
regions (Figure 1) as the annual mean over the period
1992–1996. In both the atmosphere and the ocean, the
inversions interpret carbon observations using the ‘‘flux
footprints’’ of the regions. For each region, this is the
simulated steady state concentration field arising from the
persistent unit flux of a passive dye tracer from the region.
These unit responses, or Green’s functions, are scaled until
their summed contributions most closely match observed
tracer concentrations. Final results include an estimate of the

error due to transport uncertainty derived from the between-
model differences in estimated fluxes. We first present the
details of each of the component inversions, then describe
how they are coupled to produce a jointly constrained
estimate.

2.1. Atmospheric Inversion

[7] Atmospheric inversions are performed using the
TransCom3, Level 1 (T3L1) transport estimates and atmo-
spheric observational data set compiled from the NOAA
Global Monitoring Division Globalview CO2 data set
[GLOBALVIEW-CO2, 2000]. The methods used for the
current atmospheric inversions follow those of T3L1 ‘‘con-
trol’’ inversion described by Gurney et al. [2002, 2003]
exactly, with the exception of two modifications (detailed
below). We have chosen to use the TransCom3 regional
breakdown in order to exploit the model simulations per-
formed for that experiment. The decision to use T3L1
simulations, observations, and error weights allows us to
make direct comparisons between our results and those
from that project without having to consider complications
arising from methodological differences.
[8] Data to be inverted are the 1992–1996 average

surface concentrations at 74 long-term monitoring stations.
These long-term means comprise many individual samples.
The choice of an annual mean estimation scheme is based
on limitations of the oceanic inversions described later. As
in the TransCom inversions, we exclude surface observa-
tions from the WITN surface and Darwin stations owing to
concerns about data quality [Gurney et al., 2003; Law et al.,
2003]. We use the standard weighted least-squares Green’s
function inversion, including observations (Cobs) and error
estimates from T3L1. While these error estimates include
the effects of measurement noise and biases, they are
strongly influenced by assumed modeling errors. We make
two modifications to the T3L1 inversion: prior flux esti-
mates are not imposed, and the steady state atmospheric CO2

‘‘background’’ field generated by propagating Takahashi et
al. [1999] (henceforth, Tak99)-estimated air-sea fluxes
through each transport model (CTak99) is not presubtracted
from the station observations. The detailed effects of these
methodological changes on flux estimates are described in
the auxiliary material of a companion paper [Jacobson et
al., 2007]. As in the T3L1 inversion, background CO2

concentration fields resulting from estimates of the season-
al rectification of neutral land biosphere fluxes (CNBSR)
[Denning et al., 1995] and fossil fuel fluxes (CFF) are
removed from the observations (Cobs) before inversion:

Canom ¼ Cobs � CNBSR � CFF: ð1Þ

The flux estimates resulting from this inversion of the
anomalous concentration field (Canom) implicitly include
corrections to these assumed background flux fields in
addition to fluxes from intentionally unmodeled processes
such as land use change. Also as in T3L1, the sum of the
flux estimates is constrained to agree with a mass-balance
condition derived from an estimate of the difference
between estimated fossil-fuel emissions for this period
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(�6.1 PgC yr�1) and the observed 1992–1996 atmospheric
growth rate (3.3 ± 0.1 PgC yr�1).
[9] The atmospheric inverse problem described here is ill-

posed, with most regional fluxes poorly constrained by the
available observations. Most inversion analyses use some
form of regularization to attenuate the large uncertainties
and unrealistically large best-guess fluxes that characterize
raw inversion estimates. By avoiding regularization alto-
gether, we admit large uncertainties in our results, especially
for terrestrial flux estimates in the tropics and Southern
Hemisphere. The uncertainties for poorly constrained
regions are often strongly correlated with other regions,
indicating that their flux estimates are interdependent.
In contrast, regularization with Bayesian priors applied
as independent regional estimates, that is, without prior
between-region correlations, attenuates this error structure
and makes the regional estimates appear to be more inde-
pendent than data and transport simulations alone would
predict. This effect is simply due to the application of priors
as constraints on each region’s flux independent of every
other region. We take the position that preservation of
the unregularized error structure is instructive. While many
regions cannot be reasonably constrained individually,
aggregating the interdependent regional flux estimates in
postprocessing shows that large regions can still be con-
strained without introducing bias from model-derived priors
or other regularization techniques. The raw errors from an
unregularized inversion also give an objective assessment of
the strength of data constraints. As detailed below, an
independent motivation for this choice is that regional flux
correlations are also the mechanism by which information
from the ocean is propagated to terrestrial fluxes.
[10] Using annual mean station data for the atmospheric

inversion requires the simulation of a land biosphere ‘‘rec-
tifier’’ field [Denning et al., 1995], which arises from the

covariability of biospheric fluxes and atmospheric circula-
tion. The requirement of simulating this field represents a
potential source of bias in our results, as it involves the
propagation of an assumed seasonal biospheric flux distri-
bution through a model with a possibly incorrect simulation
of seasonal variability in tropospheric circulation, with
sensitivity to the representation of planetary boundary layer
ventilation. Recent atmospheric inversion studies [e.g.,
Baker, 2001; Gurney et al., 2002; Rödenbeck et al.,
2003b] have focused on analysis of monthly data to avoid
this potential bias. This approach generally requires the
estimation of monthly fluxes as well, however, and it
remains to be shown that avoiding the potential bias of
subtracting a simulated rectification effect is worth the cost
of added dimensionality in the estimation problem. As
described below, the ocean interior data used in this study
are largely insensitive to variability with timescales less
than about 5 years, so estimating annual mean fluxes is a
natural choice.
[11] Seasonally varying air-sea fluxes in conjunction with

seasonally varying atmospheric transport can also yield a
rectifier effect. We have estimated the magnitude of this
effect by propagating two sets of ocean inversion fluxes
through the MOZART version 2 atmospheric transport
model [Horowitz et al., 2003] using interannually varying
wind fields. In the first case, the air-sea fluxes are the
monthly flux estimates from the oceanic inversion, with an
global oceanic uptake of about 2 PgC yr�1. In the second
case, the fluxes are the annual mean of those inversion
estimates. The difference between the atmospheric concen-
tration response fields of these two simulations is analogous
to the neutral land biosphere seasonal rectifier. We find that
with the exception of specific locations in the atmosphere,
the rectification signal is negligible. Surface volume mixing
ratios of CO2 averaged in the fourth year of simulation

Figure 1. Flux regions and observational network. The 11 ocean regions (blue) and 11 land regions
(green) are shown with locations of the 74 atmospheric stations (red) and 67,484 ocean observations
(white). Oceanic stations along two meridional sections in the Atlantic and Pacific are highlighted in
yellow; these sections will be discussed by Jacobson et al. [2007].
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sampled at the Transcom3 subset of GLOBALVIEW sta-
tions differ by no more than 3% between the two simu-
lations, and 85% of the stations had a difference of less than
2%. The greatest differences were seen in the western
subpolar regions of both the Pacific and Atlantic oceans,
away from any GLOBALVIEW stations. For future studies
employing observations over the oceans at latitudes be-
tween 40�N and 50�N, this rectification effect may need to
be included.

2.2. Oceanic Inversion

[12] We use the ocean inversion method first elaborated
by Gloor et al. [2003]. While our atmospheric and ocean
inversions use a similar Green’s function approach, there are
three important differences that distinguish them. First and
most important, the data density is much higher in the ocean
than in the atmosphere. The ocean interior data come from
67,484 observations at stations distributed throughout the
world ocean (Figure 1) and at which the entire vertical
column is generally sampled. This allows us to estimate air-
sea fluxes at fairly high resolution; fluxes are initially
estimated for 27 oceanic regions with approximately twice
the meridional resolution of the TransCom3 regions. The
use of observations from the entire water column imposes
an effective temporal smoothing on the data, since water
below the mixed layer consists of contributions from
multiple years that have been smoothed by mixing. Thus
while the atmospheric data are time-averaged over the
1992–1996 period to remove their high-frequency compo-
nents for the time-invariant atmospheric inversion, the
ocean interior data are inherently suitable for investigations
of processes with timescales of about 5 years and longer.
The bulk of the data used in this study are available in the
GLODAP version 1.0 [Key et al., 2004] database, but some
historical Atlantic data not present in the GLODAP product
have also been used [Mikaloff Fletcher et al., 2006].
[13] Secondly, the tracer concentrations being analyzed

are not directly measured, but are the result of calculations
designed to determine both that part of the oceanic dis-
solved inorganic carbon (DIC) distribution that is driven by
the natural exchange of CO2 across the air-sea interface, and
the anthropogenic DIC concentration. While DIC concen-
trations at the surface are modified by air-sea exchange,
away from the surface it is transformations related to
biology that change DIC concentrations. The biological
transformations include changes to and from both organic
carbon and inorganic carbon in the form of CaCO3. Con-
sidering for the moment only the organic carbon compo-
nent, we can consider a potential DIC concentration that
would result if phytoplankton were allowed to convert as
much DIC to organic carbon as possible. In the absence of
growth limitation by light or micronutrient availability and
without remineralization opposing this process, photosyn-
thetic production would proceed until all macronutrients
were consumed. For this purpose, the availability of macro-
nutrients is represented by observations of dissolved phos-
phate, so this potential reduction in DIC can be estimated by
multiplying the observed PO4

�3 concentration by an as-
sumed stoichiometric ratio of carbon to phosphate in
organic material, RC:P. The potential contribution of CaCO3

formation to reducing DIC is more difficult to assess
because Ca2+ concentrations in the ocean are largely insen-
sitive to CaCO3 formation and dissolution. Instead, the
ocean’s alkalinity (Alk), a measure of charge balance related
to the carbon system, is used as an intermediary to infer the
potential of hard-tissue formation to consume DIC. This
contribution includes not only the observed alkalinity, but
also a component of potential change in alkalinity due to
consumption of NO3

�, once more referenced to the phos-
phate concentration using a stoichiometric ratio, RN:P. In the
absence of anthropogenic carbon contamination, therefore,
one can define a preindustrial carbon tracer that is con-
served by assumption in the ocean interior,

C*PI ¼ DICPI �DCbio

¼ DICPI � RC:P PO�3
4

� �
� 1

2
Alkþ RN :P PO�3

4

� �� �
; ð2Þ

in which DICPI is the preindustrial in situ DIC concentra-
tion. In much of the world ocean, contemporary DIC has
been increased over preindustrial levels owing to uptake of
anthropogenic carbon from the atmosphere. To account for
this perturbation, (2) is modified to yield a contemporary
conserved tracer,

C* ¼ C*PI þ Cant ¼ DIC�DCbio: ð3Þ

The anthropogenic carbon concentration, Cant, is estimated
using the DC* method developed by Gruber et al. [1996].
For details of the computation of the anthropogenic carbon
perturbation in the world ocean, the reader is referred to
Gruber [1998] and Sabine et al. [1999, 2002]. Briefly, the
DC* method uses a Lagrangian approach in which the in
situ C* value of a water parcel is differenced with the value
that it is estimated to have had when it was last in contact
with the atmosphere. Together, the Cant manipulations
require several assumptions, including that the stoichiome-
try of remineralization is known and constant, that the air-
sea pCO2 disequilibrium at any given location can be
determined from available observations, that this disequili-
brium has remained constant in time, and that the amount of
time that has passed since the water was last at the surface
can be estimated from CFC measurements. The recent
manuscript of Matsumoto and Gruber [2005] presents a
comprehensive analysis of potential biases due to these
assumptions, and answers questions raised by Hall et al.
[2004]. The implications of these biases and errors for the
oceanic inversion are detailed later.
[14] Preindustrial gas exchange is estimated in the present

work by analyzing the tracer

DCgasex ¼ C*� Cant � DIC0

¼ DIC�DCbio � Cant � DIC0; ð4Þ

which is simply C*PI reduced by an arbitrary constant DIC0

chosen to make the average surface DCgasex be nearly zero.
In the limit that the anthropogenic and biological correc-
tions are correct, variations in this tracer are due only to
preindustrial gas exchange and mixing. Further details of
this computation are described by Gruber and Sarmiento
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[2002], including a salinity normalization not discussed
here. Representative fields of the DCgasex and DC* are
given by Jacobson et al. [2007].
[15] The third major difference between atmospheric and

oceanic inversions is that for the ocean data, we invert for
preindustrial and anthropogenic carbon fluxes independently.
The ocean estimation scheme inverts for steady state prein-
dustrial fluxes and imposes smooth temporal variations on
the anthropogenic fluxes [Gloor et al., 2003; Mikaloff
Fletcher et al., 2006]. The preindustrial inversion involves
running ocean dye tracers for footprint computations to
quasi-steady state. The goal for these simulations is to have
the dye concentration increasing everywhere at the same rate,
and while this can never be perfectly achieved, we find that a
reasonable approximation is obtained with 3,000 year inte-
grations. The anthropogenic carbon inversion requires a
further assumption due to the time-varying boundary condi-
tion of increasing atmospheric CO2 concentration. It is
observed that in forward simulations of the ocean carbon
cycle, the anthropogenic air-sea flux is linearly related to the
atmospheric CO2 concentration throughout the 20th century.
We use the simplifying assumption that anthropogenic fluxes
are proportional to the smoothed atmospheric CO2 perturba-
tion. This approximation holds as long as the atmospheric
CO2 burden continues to grow at approximately the same
exponential rate and the oceanic buffer capacity remains
constant [Sarmiento et al., 1995]. In the coming decades,
this approximation will likely break down, but for the current
data, collected between 1980 and 1998, the linearization of
the ocean response is still a very good approximation. We
have tested this assumption by comparing the flux estimated
by this linearized response with the flux simulated by forward
simulations of our suite of circulation models. Throughout
the entire anthropogenic era, from 1765–1999, the global
flux from the linear approximation deviates from forward
simulations with a RMS error of 0.08 PgC yr�1. For use in
the joint inversion, we form a contemporary flux estimate,
defined as the sum of preindustrial and anthropogenic (scaled
to give the 1992–1996 mean) fluxes.
2.2.1. Transport, Errors, and Patterns
[16] The Green’s function approach requires model sim-

ulations of the global ‘‘footprint’’ of flux into or out of each
region. The eventual three-dimensional shape of a regional
footprint is determined not only by advection and diffusion
as simulated by the underlying general circulation model
(GCM), but also by the spatial and temporal distribution of
the unit of surface dye flux imposed on it. We assess
uncertainty due to transport using a suite of configurations
of the MOM3 ocean general circulation model [Pacanowski
and Gnanadesikan, 1998]. This suite represents five differ-
ent circulation schemes which vary on the basis of their
vertical and along-isopycnal diffusivity coefficients, but
maintain a density structure consistent with observations
[Gnanadesikan, 1999; Gnanadesikan et al., 2004]. The list
of MOM3 configurations and their resultant forward and
inverse estimates of global carbon flux are presented in
Table 1. In this study we assess oceanic inversion uncer-
tainty to the within-region spatial and temporal distribution
of imposed surface dye flux by using two different schemes
for each of the five circulation configurations. Atmospheric
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inversion studies frequently use a single estimate of within-
region flux pattern (but see Gloor et al. [1999] and
Rödenbeck et al. [2003a]). Unlike the previous ocean
inversion of Gloor et al. [2003], the surface flux patterns
here include a seasonal cycle. Preindustrial and anthropo-
genic footprints are computed once for each model using the
Takahashi et al. [2002] CO2 flux patterns to partition the
total annual regional flux into monthly contributions from
each grid box. A second set of regional footprints is
computed for each model using the monthly surface flux
patterns manifested by that model in an OCMIP2 (Ocean
Carbon Model Intercomparison Project 2) [Orr et al., 2001]
forward simulation. These latter patterns vary from model to
model and have different preindustrial and anthropogenic
patterns. In the Takahashi et al. [2002] surface flux pattern
condition, the pattern is the same for each model and for the
two eras.
[17] Assigned observational errors must account not only

for uncertainty from random noise in the measurements, but
also every other process that might contribute to the
inability to perfectly invert fluxes. This includes systematic
uncertainty due to errors in transport simulation, unmodeled
processes affecting the observations, and various assump-
tions implicit in our inversion model. To account for all of
these sources of error except the latter, a base observational
uncertainty of 10 mmol kg�1 was assumed. To this value we
add a spatially varying estimate of the uncertainty due to the
use of fixed, but uncertain, stoichiometric ratios in the
estimation of the biological contribution to observed DIC.
Error estimates for stoichiometric uncertainty in Cant were
assigned following the scheme developed by Mikaloff
Fletcher et al. [2006], based on an earlier analysis of O:C
ratio sensitivity for the North Atlantic Ocean [Gruber,
1998]. In the Mikaloff Fletcher et al. [2006] scheme, errors
are presumed to be a linear function of apparent oxygen
utilization (AOU) and of Cant. TheDCgasex tracer inherits all
the uncertainty in Cant, and has an additional component due
to uncertainty in C:P stoichiometry. The results reported
here were derived using a weighted least squares (WLS)
error model, in which the observational errors vary in space,
but are assumed to be independent from one another. The
use of uncertain and spatially constant remineralization
stoichiometry could lead to errors that are correlated be-
tween samples. To assess the effect of correlated errors on
our estimates, a set of inversions was performed using
generalized least squares, in which the off-diagonal ele-
ments of the observational error covariance matrix were
determined using a Monte Carlo estimation of the error
covariances. The results do not differ significantly from the
WLS results reported here, and will not be discussed further.
Representative values for the final observational uncertain-
ties including the stoichiometric ratio contribution are about
30 mmol kg�1 for DCgasex and about 20 mmol kg�1 for Cant.
[18] Residuals from the regression fits are generally

within 10 mmol kg�1 of zero for the anthropogenic case
and 16 mmol kg�1 for the preindustrial case. We detected no
significant lateral patterns in the residuals, but there are
suggestions of coherent vertical variability. While anthro-
pogenic residuals never differ significantly from zero, they
generally have a maximum at around 500 meters depth.

Residuals from the preindustrial inversion are also not
significantly different from zero, and tend to have a mid-
depth minimum at around 1000 m.
[19] Owing to the strong overdetermination of the oceanic

flux estimation problem, the solution obtained is remarkably
robust to assumptions made about the observational error
model. To minimize biases due to estimating fluxes for large
areas [Kaminski et al., 2001], we initially estimated fluxes
for a 27-region superset of the 11 TransCom3 ocean
regions. These 27-region flux estimates are aggregated in
postprocessing to the 11 TransCom3 regions for direct
comparison with the atmospheric inversions. An important
criterion in selecting the 27 regions was to avoid within-
region flux heterogeneity, by considering features of the
ocean circulation known to affect air-sea exchange such as
frontal boundaries. Candidate regional selections were care-
fully compared with observed DpCO2 variability and flux
features from forward simulations in a further attempt to
minimize within-region flux variability. Model simulations
and DpCO2-based flux estimates suggest that the spatial
scales of air-sea flux variability in the open ocean are
similar to the spatial extents of the 27 regions we have
selected. The use of 27 regions instead of 11, coupled with
our ability to minimize assumed within-region spatial flux
variability, mitigates the potential for large region bias. At
the same time, however, it is undeniable that there remains
some risk of significant large region bias in our results,
especially since the atmospheric component of our inver-
sion retains the large regions of the TransCom inversion.
2.2.2. Relations With Other Ocean Inversions
[20] The current ocean inversions are related to a parallel

set of inversions associated with the Ocean Inversion
Project (OIP; see http://quercus.igpp. ucla.edu/OceanInver-
sion/). The anthropogenic [Mikaloff Fletcher et al., 2006]
and preindustrial [Mikaloff Fletcher et al., 2007] inversions
from that project use the same C* data sets as the present
work, but with slightly different error weighting schemes. In
addition to the five simulations considered here, five other
GCMs were available for the OIP inversions. While the OIP
inversions sample a larger range of ocean transport uncer-
tainty, the five simulations used here form a systematic
exploration of a fundamental axis of transport uncertainty in
coarse-resolution GCMs [Gnanadesikan and Hallberg,
2000; Gnanadesikan et al., 2004]. Finally, the OIP simu-
lations used one set of within-region surface flux patterns,
whereas the simulations in this study used two different
patterns. There is no indication at this time that OIP fluxes
will differ significantly from the current oceanic inversion
flux estimates.

2.3. Joint Inversion

[21] While the atmospheric inversion constrains fluxes
into the atmosphere from both the land and sea, the oceanic
inversion directly constrains only air-sea fluxes. We com-
pute a jointly constrained surface flux estimate by combin-
ing information from atmospheric and oceanic inversions
under the assumption that they provide independent esti-
mates of air-sea fluxes.
[22] The issue of riverine carbon fluxes presents a poten-

tial inconsistency between the atmospheric and oceanic
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inversions. As discussed in the online supplementary mate-
rial, atmospheric inversions should in principle fully resolve
the terrestrial and oceanic branches of the river carbon loop,
whereas the present ocean inversions resolve only that
portion of the cycle occurring in the open ocean. While
the riverine component of the carbon cycle is poorly known
[Richey, 2004], its inclusion is important for reconciling flux
results from different methods [Sarmiento and Sundquist,
1992]. We adopt the perspective of an ideal atmospheric
inversion for the purposes of this study. This requires that
the ocean inversion estimates be corrected to account for an
effective flux of riverine carbon to the open ocean, since this
carbon is interpreted by the ocean inversion as an input
across the air-sea interface. We estimate that after burial of
organic and inorganic components in coastal sediments,
about 0.45 PgC yr�1 reaches the open ocean. This riverine
input, which masquerades in the oceanic inversion as a net
air-sea CO2 flux into the ocean, is resolved spatially and
used to correct the ocean preindustrial flux estimate (see
auxiliary material1).
[23] The estimate of fluxes from each atmospheric inver-

sion is represented by a multivariate normal distribution,
specified by a 22-element vector of mean values xa and
accompanying covariance matrix Pa. This is a result of error
propagation of the assumed distribution of measurement
errors through the matrix inverse. Our ordering convention
places the air-land fluxes before the air-sea fluxes. In the
joint inversion, the atmospheric flux estimates are updated
with information from an oceanic inversion represented by
an 11-element multivariate normal distribution (xo, Po) to
arrive at a joint estimate,

xj ¼ xa þK xo �Hxað Þ; ð5Þ

with covariance matrix

Pj ¼ I�KHð ÞPa; ð6Þ

in which I is the 22 � 22 identity matrix, and the
observation kernel H is a matrix having dimension 11 rows
by 22 columns. This matrix is all zeros with the exception of
the diagonal of the right half, which is populated with ones.
This structure represents the fact that the ocean inversions
provide no direct constraint on terrestrial fluxes. H maps the
parameters from the atmospheric inversion onto the param-
eters from the oceanic inversion, by extracting just the
11 air-sea fluxes from the 22-element atmospheric flux
estimate. The update equation (5) is in the form of a
‘‘predictor-corrector’’ operation, and represents the Bayesian
concept of combining a prior estimate (xa, Pa) from the
atmospheric inversion with new information (xo, Po) from
the oceanic inversion.
[24] The ‘‘optimal gain matrix’’ K is determined using

standard methods of sequential state estimation [Kalman,
1960; Maybeck, 1979],

K ¼ PaHT HPaHT þ Po
� ��1

; ð7Þ

in which ( )T and ( )�1 are the matrix transpose and inverse,
respectively.
[25] To provide some insight into manipulations repre-

sented by (5) to (7), it is instructive to consider the
hypothetical situation in which the oceanic inversion pro-
vides direct estimates of air-land fluxes in addition to air-sea
fluxes. In this case H would be the 22 � 22 identity matrix,
and K would be the multidimensional generalization of the
ratio of variances of atmospheric uncertainty to the sum of
atmospheric and oceanic uncertainty. We consider the
limiting cases in which the atmospheric and oceanic var-
iances have very different magnitudes. If the oceanic
uncertainty Po were much greater than the atmospheric
uncertainty, the gain K would tend to have small values.
Via (5), xj would thus be little changed from xa, and via (6),
Pj would be similarly unaffected. In contrast, as Po
becomes much smaller than Pa, K tends to the identity
matrix. In this limiting case, the oceanic information dom-
inates: (5) yields a final estimate xj � xo, and the final
uncertainty Pj becomes correspondingly small.
[26] In the atmosphere, there are 16 transport models

and thus 16 different estimates of surface fluxes; in the
ocean we use 10 different transport simulations and flux
estimates. We take the position that a reasonable sample of
the total probability distribution is to consider the entire set
of 160 permutations. Transport uncertainty is considered
before performing the coupling for each pairwise atmo-
spheric model-oceanic model permutation. The uncertainty
Pa represents not only the propagation of assumed obser-
vational errors through an individual atmospheric inversion
(‘‘internal’’ or ‘‘within-model’’ error, PaInt), but also includes
a component due to across-model transport (‘‘external’’)
uncertainty PaExt,

Pa ¼ PaInt þ PaExt: ð8Þ

The across-model uncertainty is estimated by forming a
covariance matrix from the central values of the 16 available
flux estimates,

PaExt ¼ cov xa;i
� �

; i ¼ 1 . . . 16: ð9Þ

Likewise, Po includes a sample estimate of transport
uncertainty from the 10 available ocean simulations. These
across-model uncertainties are sample estimates of the total
transport uncertainty, and could be significantly biased
owing to models having similar deficiencies. This is a
source of potential error that we cannot formally quantify
with the current method.
[27] Whereas within-model uncertainty is more important

for the present atmospheric inversions, the ocean inversions
are dominated by across-model uncertainty. The sparse
spatial distribution of data in the atmosphere yields high
internal uncertainties for unregularized atmospheric inver-
sions, so that intermodel differences in transport have little
statistical significance. The oceanic inversions, on the other
hand, are strongly overdetermined by the large number of
observations, which drives down the internal error estimates
to very low levels. This allows the across-model component
of uncertainty to become more evident in the ocean inver-

1Auxiliary materials are available at ftp://ftp.agu.org/apend/gb/
2005gb002556.
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sion. The relative roles of the errors from the two inversions
are highlighted in Figure 2, in which confidence intervals
for the unregularized atmospheric inversion estimates of air-
sea flux (in gray) are large and overlapping, whereas those
for the oceanic inversions (in blue) are much smaller and
well-separated from one another.

3. Discussion

[28] The yellow ellipse in Figure 2 represents the 68%
confidence interval for the air-sea fluxes in the Southern

Ocean and South Pacific Temperate regions. This estimate
is formally inconsistent with forward simulations made
using the same circulation configurations of the MOM3
ocean GCM, and with flux estimates derived from the
surface DpCO2 climatology of Takahashi et al. [1999,
2002]. While the joint inversion flux estimate is also
inconsistent with the regularized atmospheric inversion of
Gurney et al. [2004], it is not in disagreement with the
unregularized atmospheric estimates from the present study,
as shown by the overlap of the yellow and gray ellipses. The
joint inversion suggests that the Southern Ocean south of

Figure 2. Construction of the joint inverse, using the example of 1992–1996 flux estimates for the
Southern Ocean and South Pacific Temperate regions. The 68% confidence interval for each estimate is
shown as an error ellipsoid, for which a leftward tilt indicates anticorrelation between the two regional
estimates. The more that the tilt approaches a slope of �1 (dotted line) and the ellipse narrows, the less
power an inversion has to discriminate between the regions. Individual unregularized atmospheric
inversions are shaded in light grey and their across-model summary is the dark grey unfilled ellipse.
TransCom3 Level 2 (T3L2) results [Gurney et al., 2004], combining both within- and across-model
uncertainty in quadrature, are shown as red error bars (reported) of one standard deviation and as a red
ellipse (reproduced). It is a general feature of the multivariate normal distribution that the ±1 standard
deviation error bars appears smaller than the corresponding dimension of the 68% confidence interval
error ellipse. Individual ocean inversion results are shown as blue filled ellipses, and their across-model
summary is the blue unfilled ellipse. The final joint inversion result is the yellow ellipse with a black
border. For comparison, Takahashi et al. [1999] estimates for 1995 are shown with a green square, and
Takahashi et al. [2002] 1995 estimates are shown with a green circle. Fluxes from forward simulations of
the MOM3 suite are depicted by white triangles.
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44�S is a negligible net sink of carbon, whereas the
extratropical South Pacific Ocean is a significant net sink.
[29] The formal uncertainties in air-sea fluxes estimated

by the oceanic inversions are so much smaller than the
corresponding values from the atmospheric inversions that
their coupling is effectively equivalent to using the ocean
inversion estimates as fixed ocean priors in an atmospheric
inversion, although it is important to retain the full uncer-
tainty covariance matrix for this ocean prior. While atmo-
spheric inversions have a negligible impact on the final air-
sea flux estimates, information flows from the ocean to the
land, via correlations in flux estimates from the atmospheric
inverse. Since these correlations in the atmospheric estimate
are the direct mathematical means by which the ocean
informs terrestrial fluxes, it is important to understand their
causes. Owing to vigorous zonal mixing in the atmosphere
and a sparse observational data set, atmospheric inversions
have difficulty partitioning fluxes within broad regional
bands into contributions from the continents and basins
within each such band. This effect manifests itself as large
off-diagonal elements in the covariance matrix of parameter
uncertainty linking such neighboring areas, indicating that
the flux estimates are significantly correlated. The mass
balance constraint used in the atmospheric inversion indu-
ces further correlations between flux estimates since it
imposes a condition on the sum of all the fluxes. Ocean
inversions, on the other hand, provide strong constraints on
the air-sea component within these bands whose individual
regions are poorly resolved by the atmospheric inversion.

By accounting for the ocean portion of the total flux, we can
estimate the residual terrestrial flux with greater certainty.

3.1. Effects of the Ocean Constraint on Flux Estimates

[30] Considering oceanic and atmospheric observations in
a joint inversion framework provides several unique
insights into the global carbon cycle. Flux estimates over
both land and ocean regions show significant differences
from previous inversions and other estimates (Table 2). As
discussed above, we chose to use atmospheric inversions
similar to those of Gurney et al. [2002], (T3L1) not only to
benefit from the suite of atmospheric transport simulations
performed for the TransCom3 experiment, but also to aid
the interpretation of our results by allowing direct compar-
ison with that benchmark study. Our estimate differs from
the T3L1 results mainly owing to two factors: (1) the
avoidance of model-based priors and (2) the use of air-sea
fluxes from ocean interior data. These effects are detailed in
the online supplementary material of Jacobson et al. [2007].
We depict in Figure 3 the combined effects of these two
factors on air-sea and air-land flux estimates by drawing a
line segment for each flux region on a two-dimensional
space of flux magnitude versus uncertainty. The starting
point for each line segment is an estimate from an atmo-
sphere-only inversion using priors (similar to T3L1), and
the ending point, shown with a colored plot symbol, is the
joint inversion estimate. Whether a given result can be
statistically distinguished from zero depends on how many
standard deviations away it is from zero (gray shaded
isopleths).

Table 2. Summary of Global Estimates of Air-Land and Air-Sea Fluxesa

Source Global Air-Land Flux

Global Air-Sea Flux

Anthropogenic Fanthro Preindustrial Fpreindust Contemporary Fcontemp

IPCC TAR �1.4 ± 0.7b �1.7 ± 0.5b,c

T3L1 �1.3 ± 1.4 �1.5 ± 1.4
T3L2 �1.5 ± 1.0 �1.3 ± 1.0
Bopp O2/N2 �1.7 ± 0.9d,e (�1.2 ± 0.9)d �1.9 ± 0.9c,e (�2.3 ± 0.7)d

Keeling O2/N2 �1.7 ± 0.8b,e (�1.3 ± 0.8)b �1.4 ± 0.6c,e (�1.9 ± 0.6)b

Joint �1.1 ± 0.2 �2.1 ± 0.1 0.4 ± 0.2e �1.7 ± 0.2
Gloor inverse �1.9 ± 0.3 (�1.7 ± 0.3)c,f 0.4 ± 0.3e �1.5 ± 0.4 (�1.8 ± 0.4)c,e,f

McNeil CFCs �1.5 ± 0.4 (�2.0 ± 0.4)b,c,e

Matsumoto OCMIP �1.7 ± 0.2 (�2.2 ± 0.2)b,c,e

Tak99 k � u2 2.1b

Tak02 k � u2 1.6b

Tak02 k � u3 2.3b

MOM3 forward �2.2 ± 0.2 0.4 ± 0.1e �1.7 ± 0.2e

aEstimates have been corrected so that river carbon flow is manifested as a land sink and a preindustrial ocean source of 0.45 PgC yr�1 (see auxiliary
material). Contemporary air-sea fluxes (Fcontemp = Fpreindust + Fanthro) have been scaled to the 1992–1996 period by assuming the anthropogenic
component is proportional to the atmospheric concentration perturbation, but air-land fluxes are not scaled. Original estimates, uncorrected for river carbon
and unscaled in time, are given in parentheses. ‘‘IPCC-TAR 90s’’ is the estimate of Prentice et al. [2001] for the 1990s; ‘‘T3L1’’ and ‘‘T3L2’’ are the
TransCom3 control inversions for level 1 [Gurney et al., 2002] and level 2 [Gurney et al., 2004], respectively, both for the period 1992–1996. ‘‘BoppO2/N2’’
and ‘‘Keeling O2/N2’’ represent the oxygen analyses of Bopp et al. [2002] for the period 1990–1996 and Keeling and Garcia [2002] for the 1990s,
respectively. ‘‘Joint’’ is the current joint inversion for the period 1992–1996. ‘‘Gloor inverse’’ is the previous ocean inversion of Gloor et al. [2003] scaled
to 1992–1996, a result nearly identical to that of McNeil et al. [2003] from CFC analysis. ‘‘Matsumoto OCMIP’’ is the summary of forward ocean carbon
cycle simulations [Orr et al., 2001], as reported by Matsumoto et al. [2004], also scaled to 1992–1996. ‘‘Tak99’’ and ‘‘Tak02’’ represent estimates based
on the DpCO2 analyses of Takahashi et al. [1999, 2002] respectively, using quadratic (‘‘k � u2’’ [Wanninkhof, 1992]) and cubic (‘‘k � u3’’ [Wanninkhof
and McGillis, 1999]) gas transfer velocity parameterizations. ‘‘MOM3 Forward’’ are the 1992–1996 fluxes from OCMIP2 biotic simulations for the five
models of the MOM3 suite used in the present study (see Table 1 of Jacobson et al. [2007]).

bFor the period of the 1990s.
cAir-sea fluxes scaled to 1992–1996 by assuming that the anthropogenic flux is proportional to the atmospheric CO2 perturbation.
dFor the period 1990–1996.
eIncludes 0.45 ± 0.18 PgC yr�1 to account for river carbon fluxes (see auxiliary material).
fFor the period 1990–1991.
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[31] Figure 3 shows that as expected, the use of ocean
interior data drives uncertainty in our estimate of air-sea
fluxes to low values, with no ocean region having an
uncertainty of more than about 0.1 PgC yr�1. All air-sea
flux estimates are significantly different from zero owing to
these low uncertainties. Tropical regions (light blue dia-
monds) are all sources, and southern temperate latitudes are
the strongest sinks (downward pointing medium blue tri-
angles). The high-latitude oceans of both hemispheres
(darkest blue triangles) are weak sinks.
[32] While temperate land regions (medium green trian-

gles in Figure 3) are generally significant sinks, boreal
zones (darkest green triangles) are found to be more neutral.
The joint inversion has in all cases larger flux uncertainties
for individual terrestrial regions than the T3L1 inversion,
since we do not use prior estimates to regularize the
solution. The line segments corresponding to land regions
in Figure 3 all terminate with plot symbols further to the
right than their starting points. This effect is much stronger
for tropical land regions (light green diamonds) than for
mid- and high-latitude land regions. While the estimates and
accompanying uncertainties for tropical land regions under-
go strong changes, the corresponding changes in signifi-
cance level, measured as the number of standard deviations
that a given result is away from zero (gray-shaded iso-
pleths), are much smaller. For instance, while the uncer-
tainty of the tropical South American flux (SATR) nearly
doubles from T3L1 to the joint estimate, its significance
actually increases, from 0.5 to 1.3 standard deviations away

from zero. The T3L1 result can be distinguished from zero
with a 70% probability, but the joint inversion estimate is
more statistically significant, indicating with a 90% proba-
bility that the South American tropics are a source of carbon
to the atmosphere. Terrestrial flux estimates from the joint
inversion, and especially aggregates fluxes for several
regions considered together, are analyzed in detail in a
companion paper [Jacobson et al., 2007]. The auxiliary
material of that paper also discusses the effects of each of
the methodological changes that distinguish the T3L1
inversion from the current unregularized atmospheric and
joint inversions.

3.2. Land-Ocean Partitioning of the Total Sink

[33] The joint inversion estimate of 1992–1996 average
annual uptake of carbon dioxide by the land and ocean
combined is 2.8 ± 0.1 PgC yr�1, in agreement with Trans-
Com 3, Level 1 and Level 2 (henceforth, T3L1 and T3L2,
respectively), owing to the use of a similar mass balance
constraint. The partitioning of this global flux between
terrestrial and oceanic components is similar, although the
uncertainties on the global fluxes are significantly reduced.
The joint inversion indicates that air-sea flux is responsible
for 60% of the total uptake (lower three rows of Table 1 of
Jacobson et al. [2007]). The anthropogenic air-sea flux of
carbon, is estimated to be �2.1 ± �0.2 PgC yr�1, similar to
that estimated by Mikaloff Fletcher et al. [2006]. While the
spatial distribution of terrestrial flux is still subject to
significant uncertainty, the confidence we have on the

Figure 3. Effect of the ocean constraint on regional estimates of annual-mean surface flux of CO2 in
PgC yr�1. Each line segment shows the change from the atmosphere-only TransCom3, Level 1 control
inversion with priors (end of line without a plot symbol) to joint ocean-atmosphere inversion estimates
without priors (end with a plot symbol). Estimated fluxes are on the vertical axis and uncertainties (1 s.d.)
are plotted with a log scale on the horizontal axis. Air-sea fluxes have a blue plot symbol, and air-land
fluxes are in green, with the shape and color shade giving the latitude band of the flux region, as shown in
the key. The aggregate of land regions in the tropics and Southern Hemisphere (‘‘Trop + S.Land’’) is
shown using a light green circular plot symbol. Isopleths of statistical significance (the number of
standard deviations away from zero) are shaded in gray. Names (see Table 1 of Jacobson et al. [2007])
are shown for selected regions, with those in red having joint inversion estimates that are significantly
different than zero.
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atmospheric growth rate and on the total air-sea flux allows
the joint inversion to determine the total land flux with a
high degree of confidence (Figure 4). These reported
uncertainties comprise only those sources of error that are
formally quantifiable, and actual uncertainties are probably
higher.
[34] Atmospheric oxygen and 13C analyses [Battle et al.,

2000; Keeling and Garcia, 2002] and pCO2-based flux
estimates [Takahashi et al., 2002] agree that the ocean is
a larger sink for anthropogenic carbon than is the land
(Table 2 and Figure 4). Forward simulations of the ocean
carbon cycle [Orr et al., 2001; Matsumoto et al., 2004;
Jacobson et al., 2007, Table 1] predict an even greater
ocean sink of anthropogenic carbon. The atmospheric
inversions of TransCom Level 1 [Gurney et al., 2002] and
Level 2 [Gurney et al., 2004], and of [Rödenbeck et al.,
2003a] have a more balanced partitioning between land and
ocean sinks. (Note however that Rödenbeck et al. [2003a]
state that their results are suited for analysis of temporal
variability and may not be appropriate for studies of long-
term averages.)

4. Conclusions

[35] We have coupled independent inversions in the
atmosphere and the ocean to produce a jointly constrained
estimate of surface fluxes of carbon dioxide in the period
1992–1996. The linear combination of these two inversions
yields an estimate which is consistent with CO2 mixing
ratios in the atmosphere from the NOAA ESRL/GMD
cooperative observational network, and with ocean interior
measurements from the GLODAP ocean carbon data anal-
ysis project. Air-sea fluxes from the oceanic inversion have
relatively small uncertainties, and provide a powerful con-
straint for the analysis of atmospheric observations. This has
allowed us to refrain from using model-based priors to
regularize the flux estimate, while still obtaining reasonable
uncertainties for individual land regions in the well-
observed Northern Hemisphere.

[36] The net oceanic carbon sink averaged over the
1992–1996 period was responsible for an air-sea flux of
�1.7 ± 0.2 PgC yr�1, comprising an anthropogenic flux of
�2.1 ± 0.2 PgC yr�1 imposed on a natural background
outgassing of 0.4 ± 0.2 PgC yr�1. These estimates are
strongly constrained by the data coverage in the recently
completed oceanic carbon survey [Key et al., 2004]. The
uncertainty on this estimate formally includes components
due to biogeochemical assumptions, transport biases, uncer-
tainty in poorly known river carbon fluxes, and measurement
errors. Its low value is driven by the large number of
locations at which ocean interior data are available, and by
the relatively well-distributed three-dimensional sampling in
the ocean. It is, however, only a formal error estimate,
including only those sources of errors that we could quantify.
Actual errors are likely to be larger.
[37] The terrestrial sink we predict (�1.1 ± 0.2 PgC yr�1)

is generally smaller than predicted by analyses of atmo-
spheric oxygen and inversions of atmospheric CO2, but
uncertainty levels in those estimates are too high to make
claims of a significant difference.
[38] Flux estimates from tropical and southern land

regions are poorly constrained by this method, but some
significance levels are increased. Notably, despite a large
uncertainty, the South American tropics are found to be a
net source of carbon to the atmosphere. This is discussed in
detail in a companion manuscript [Jacobson et al., 2007].
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Figure 4. Probability density distributions for the partitioning of the total atmospheric sink into
(a) terrestrial and (b) oceanic components, according to various reports in the literature, assuming normal
distributions. Estimates have been corrected such that the riverine carbon loop appears as a land sink and
an ocean source of 0.45 PgC yr�1 (see auxiliary material), and air-sea fluxes have been scaled to the
1992–1996 period. For corrections, scaling, and references, see Table 2.
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